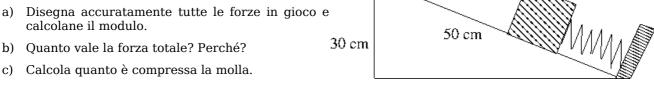
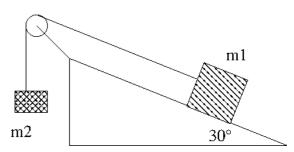


Liceo B. Russell VIA 4 NOVEMBRE 35.

	Indirizzo:	SCIENTIFICO SCIENZE APPLICATE	CLASSE 2C	
	Data:	26 settembre 2012	Prof. Paolo Armani	
l	Disciplina:	FISICA	ALUNNO	
	Prova:	RECUPERO DEBITO		

Gli esercizi sono grossomodo in ordine di difficoltà. Gli ultimi due sono facoltativi: svolgi uno dei due a scelta solo se hai terminato gli altri! Buon lavoro!


- 1. Considera le due forze $\vec{F}_1 = (3,1)N$ e $\vec{F}_2 = (2,3)N$ rappresentate in figura.
 - a) calcola il modulo dei due vettori $\; \vec{F}_1 \;$ e $\; \vec{F}_2 \;$;
 - b) calcola e disegna la somma dei due vettori $\vec{S} = \vec{F}_1 + \vec{F}_2$ (modulo e componenti x e y);
 - c) calcola e disegna la differenza dei due vettori $\vec{D} = \vec{F}_2 \vec{F}_1$ (modulo e componenti);
 - d) disegna il vettore $\vec{Q} = -\vec{F}_2$ e trova le sue componenti x, y ed il modulo.


2. Considera il problema rappresentato in figura. Il sistema è in equilibrio. Conosci la massa m=450g, l'altezza del piano inclinato h=30 cm, la sua m = 450 g

lunghezza l=50cm, e la costante elastica della molla k=30 N/m.

- a) Disegna accuratamente tutte le forze in gioco e calcolane il modulo.

- 3. La diga di Santa Giustina è alta 152m. Calcola la pressione alla base della diga quando il bacino è
- 4. Un materasso ad aria è lungo 2.2 m, largo 0.65 m ed alto 13 cm. Il materasso ha una massa pari a 0.22 kg. Qual è la massa massima che può supportare in acqua dolce senza affondare?
- 5. Un fabbro lascia cadere un ferro di cavallo (massa 500g, calore specifico c_s =448 J /(kg °C)) dentro un secchio con 25 litri d'acqua (c_s =4186 J/(kg °C)). Se la temperatura iniziale del ferro è di 450°C e quella dell'acqua è 23°C, qual è la temperatura di equilibrio del sistema? (supponi trascurabile la dispersione di calore nell'ambiente circostante).
- 6. Considera il sistema rappresentato in figura, con m1=2 kg.
 - In assenza di attrito, calcola quanto deve valere m2 affinché il sistema sia in equilibrio. Calcola anche la tensione T della corda.
 - b) In presenza di attrito statico (con μ_s =0.3), calcola quanto può valere al massimo e al minimo m2 affinché il sistema rimanga comunque in equilibrio.

- 7. Mara vuole preparare una bevanda fresca al sambuco. Prende 10 cubetti di ghiaccio (per un totale di 100 g) dal freezer ad una temperatura di -18°C e li mette in una thermos contenente un litro di sambuco che si trova inizialmente a 20°C. Il calore specifico del sambuco e dell'acqua è 4186 J/(kg °C), quello del ghiaccio è 2090 J/(kg °C), il calore latente di fusione del ghiaccio è 335.2 kJ/kg.
 - a) Illustra qualitativamente tutti i fenomeni in gioco;
 - b) Calcola il calore Q1 necessario per riscaldare il ghiaccio fino a 0°C;
 - c) Calcola il calore Q2 necessario per fondere il ghiaccio;
 - d) Calcola la temperatura del sambuco appena sciolto tutto il ghiaccio (assumi quindi che l'acqua del ghiaccio fuso sia ancora a 0°C)
 - e) Calcola la temperatura di equilibrio finale.